Int.J.Mol.Sci.2020,21(22),8548
Int.J.Mol.Sci.2020,21(22),8548

Efficité des acides hydroxycinnamiques pour inhibier la production d' Ochratoxine A par Aspergillus westerdijkiae et Penicillium verrucosum

Notre nouvel article publié dans International Journal of Molecular Sciences

Boonmee, S.; Atanasova, V.; Chéreau, S.; Marchegay, G.; Hyde, K.D.; Richard-Forget, F. Efficiency of Hydroxycinnamic Phenolic Acids to Inhibit the Production of Ochratoxin A by Aspergillus westerdijkiae and Penicillium verrucosum. Int. J. Mol. Sci. 2020, 21, 8548. https://doi.org/10.3390/ijms21228548

Cet article est issu des résultats obtenus par Saranyaphat Boonmee pendant son séjour à MycSA, dans le cadre d'une collaboration de notre unité avec le Center of Excellence in Fungal Research, Mae Fah Luang University (Thailand) and MycSA.

Résumé:

Ochratoxin A (OTA) is one of the worldwide most important mycotoxins in terms of health and agroeconomic consequences. With the aim to promote the use of phytochemicals as alternatives to synthetic fungicides, the e ect of hydroxycinnamic acids on the fungal growth and OTA yield by two major OTA-producing species was investigated. After a first step dedicated to the definition of most suitable culture conditions, the impact of 0.5mMferulic (FER), p-coumaric (COUM), ca eic and chlorogenic acids was evaluated on Aspergillus westerdijkiae and Penicillium verrucosum. Whereas no fungal growth reduction was observed regardless of the phenolic acid and fungal isolate, our results demonstrated the capacity of FER and COUM to inhibit OTA production. The most
effi cient compound was FER that led to a 70% reduction of OTA yielded by P. verrucosum and, although not statistically significant, a 35% inhibition of OTA produced by A. westerdijkiae. To further
investigate the bioactivity of FER and COUM, their metabolic fate was characterized in fungal broths. The capacity of P. verrucosum to metabolize FER and COUM through a C2-clivage type degradation was demonstrated. Overall, our data support the potential use of FER to prevent OTA contamination and reduce the use of synthetic pesticides.